首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30031篇
  免费   1131篇
  国内免费   274篇
电工技术   145篇
综合类   124篇
化学工业   6660篇
金属工艺   4969篇
机械仪表   1225篇
建筑科学   307篇
矿业工程   106篇
能源动力   4009篇
轻工业   125篇
水利工程   17篇
石油天然气   28篇
武器工业   7篇
无线电   1563篇
一般工业技术   9305篇
冶金工业   1274篇
原子能技术   249篇
自动化技术   1323篇
  2023年   1384篇
  2022年   617篇
  2021年   646篇
  2020年   1522篇
  2019年   1341篇
  2018年   776篇
  2017年   1657篇
  2016年   1637篇
  2015年   1851篇
  2014年   2342篇
  2013年   2093篇
  2012年   1689篇
  2011年   1424篇
  2010年   1505篇
  2009年   1709篇
  2008年   731篇
  2007年   1287篇
  2006年   1205篇
  2005年   733篇
  2004年   557篇
  2003年   680篇
  2002年   785篇
  2001年   813篇
  2000年   547篇
  1999年   644篇
  1998年   235篇
  1997年   113篇
  1996年   106篇
  1995年   93篇
  1994年   93篇
  1993年   72篇
  1992年   67篇
  1991年   54篇
  1990年   39篇
  1989年   54篇
  1988年   37篇
  1987年   12篇
  1986年   14篇
  1985年   24篇
  1984年   25篇
  1983年   27篇
  1982年   18篇
  1981年   11篇
  1980年   21篇
  1979年   24篇
  1978年   26篇
  1977年   15篇
  1976年   15篇
  1975年   11篇
  1974年   13篇
排序方式: 共有10000条查询结果,搜索用时 187 毫秒
1.
Ce:Y3Al5O12 transparent ceramics (TCs) with appropriate emission light proportion and high thermal stability are significant to construct white light emitting diode devices with excellent chromaticity parameters. In this work, strategies of controlling crystal-field splitting around Ce3+ ion and doping orange-red emitting ion, were adopted to fabricate Ce:(Y,Tb)3(Al,Mn)5O12 TCs via vacuum sintering technique. Notably, 85.4 % of the room-temperature luminescence intensity of the TC was retained at 150 °C, and the color rendering index was as high as 79.8. Furthermore, a 12 nm red shift and a 16.2 % increase of full width at half maximum were achieved owing to the synergistic effects of Tb3+ and Mn2+ ions. By combining TCs with a 460 nm blue chip, a warm white light with a low correlated color temperature of 4155 K was acquired. Meanwhile, the action mechanism of Tb3+ ion and the energy transfer between Ce3+ and Mn2+ ions were verified in prepared TCs.  相似文献   
2.
Bioactive ceramic scaffolds for bone regeneration consisting of a three-dimensional mesh of interpenetrating struts with square section were fabricated via Digital Light Processing (DLP). The ability of the technique to manufacture 3D porous structures from β-tricalcium phosphate (β-TCP) powders with different dimensions of struts and pores was evaluated, identifying the possibilities and limitations of the manufacturing process. Small pore sizes were found to seriously complicate the elimination of excess slurry from the scaffold’s innermost pores. The effect of the strut/pore size on the mechanical performance of the scaffolds under compressive stresses was also evaluated, but no significant influence was found. Under compressive stresses, the structures resulted weaker when tested perpendicularly to the printing plane due to interlayer shear failure. Interlayer superficial grooves are proposed as potential failure-controlling defects, which could also explain the lack of a Weibull size effect on the mechanical strength of the fabricated DLP scaffolds.  相似文献   
3.
4.
Aqueous solutions of poly(vinylpyrrolidone) (PVP) of various concentrations (20, 25, and 28 wt%) were successfully spun into fibers by centrifugal spinning. The pristine PVP fibers were annealed and carbonized to produce flexible carbon fibers for use as binder-free anodes in lithium-ion batteries. These flexible carbon fibers were prepared by developing a novel three-step heat treatment to reduce the residual stresses in the pristine PVP precursor fibers, and to prevent fiber degradation during carbonization. The thermogravimetric analysis data showed that the annealed fibers yielded a residual mass percentage of 36.0% while the pristine PVP fibers suffered a higher mass loss and only retained 26.5% of original mass above 450 °C (under nitrogen). The electrochemical performance of the carbon-fiber anodes was evaluated by conducting galvanostatic charge/discharge, rate performance, and cycle voltammetry experiments. The 20, 25, and 28 wt% derived binder-free anodes delivered specific charge capacities of 205, 189, and 275 mAh g−1, respectively, after the first cycle at a current density of 100 mA g−1. The results obtained in this work indicate that a feasible pathway towards a large-scale production of carbon-fiber anodes from a 100% aqueous solution can be achieved via centrifugal spinning and subsequent heat treatment.  相似文献   
5.
The realization of liquid metal-based wearable systems will be a milestone toward high-performance, integrated electronic skin. However, despite the revolutionary progress achieved in many other components of electronic skin, liquid metal-based flexible sensors still suffer from poor sensitivity due to the insufficient resistance change of liquid metal to deformation. Herein, a nacre-inspired architecture composed of a biphasic pattern (liquid metal with Cr/Cu underlayer) as “bricks” and strain-sensitive Ag film as “mortar” is developed, which breaks the long-standing sensitivity bottleneck of liquid metal-based electronic skin. With 2 orders of magnitude of sensitivity amplification while maintaining wide (>85%) working range, for the first time, liquid metal-based strain sensors rival the state-of-art counterparts. This liquid metal composite features spatially regulated cracking behavior. On the one hand, hard Cr cells locally modulate the strain distribution, which avoids premature cut-through cracks and prolongs the defect propagation in the adjacent Ag film. On the other hand, the separated liquid metal cells prevent unfavorable continuous liquid-metal paths and create crack-free regions during strain. Demonstrated in diverse scenarios, the proposed design concept may spark more applications of ultrasensitive liquid metal-based electronic skins, and reveals a pathway for sensor development via crack engineering.  相似文献   
6.
To elucidate the crystal growth process of hematite in high-temperature lead-free multicomponent alkali borosilicate glass, which is essentially important to control the color of red overglaze enamels, frit and hematite mixture is heat-treated and subjected to microscopic observations. Hematite particles slightly grew due to sintering at low temperature. Once the glass matrix formed near the softening point of frit, hematite dissolved into glass fluid. Hematite crystal growth concomitantly ensued with decrease in the number of hematite particles via Ostwald ripening as the temperature increased. The grown particles exhibited an anisotropic morphology with straight outlines reflecting crystal planes, the morphology of which is completely different from those grown by sintering and particles prior to heating. These results suggest that comprehensive understanding of frit and hematite from the perspectives of glass science and chemistry as well as powder technology are important to truly control the color of red overglaze enamels.  相似文献   
7.
The development of the Internet of things has prompted an exponential increase in the demand for flexible, wearable devices, thereby posing new challenges to their integration and conformalization. Additive manufacturing facilitates the fabrication of complex parts via a single integrated process. Herein, the development of a multinozzle, multimaterial printing device is reported. This device accommodates the various characteristics of printing materials, ensures high-capacity printing, and can accommodate a wide range of material viscosities from 0 to 1000 Cp. Complete capacitors, inclusive of the current collector, electrode, and electrolyte, can be printed without repeated clamping to complete the preheating, printing, and sintering processes. This method addresses the poor stability issue associated with printed electrode materials. Furthermore, after the intercalation of LiFePO4 with Na ions, X-ray photoelectron spectroscopy and X-ray diffraction results reveal that the Na ions permeate the interlayer structure of LiFePO4, enhancing the ion migration channels by increasing the ion transmission rate. A current rate of 2.5 mAh ensures >2000 charge/discharge cycles, while retaining a charge/discharge efficiency of 96% and a discharge capacity of 91.3 mAh g−1. This manufacturing process can provide conformal power modules for a diverse range of portable devices with various shapes, improving space utilization.  相似文献   
8.
9.
The delayed failure of SiC fibrous reinforcement has continuously been investigated to warrant the long term performances of Ceramic Matrix Composite (CMC). Chiefly assessed on multifilament tow samples to alleviate some handling difficulties, subcritical crack growth (SCG) parameters are however ruled by structural artifacts which hinder the identification of intrinsic filament behavior. In this paper, we propose to estimate the true filament parameters for 5 fiber types from bundle behavior using a recently communicated Monte Carlo algorithm integrating flaw and stress distributions through a deterministic fracture mechanics law under Paris’ formulation. So computed tow lifetime are broadly dispersed, encompassing raw data, and show a structure-dependent scale effect, revealed by nfilament>ntow where n is the stress exponent. The relationship between SCG coefficient and chemical composition of the substrate is discussed and highlights the major effect of doping elements (Ti or Zr), oxygen or hydrogen content.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号